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1. INTRODUCTION

Monte Carlo studies are experiments that use simulated data. Like

any experiment, they should be designed to minimize extraneous varia-

tion. However the Monte Carlo experimenter, unlike the designer of

traditional field experiments, usually knows and can control the

stochastic structure of the simulated data. "Swindles" or variance

reduction techniques exploit this knowledge to construct more precise

estimates of the unknown parameters or to reduce the number of simula-

tion runs (and thus the cost) necessary to attain some desired level of

precision. Because swindle designs use information that is not usually

available in field experiments, they sometimes appear to provide an

unfair reduction in the variance of estimated quantities (hence their

name). Indeed, the improvement in precision and the attendant reduction

in cost can be .so great that a well-designed swindle can make feasible

Monte Carlo studies that might otherwise have been impossible. In

view of this, it is unfortunate that many Monte Carlo studies do not

employ variance reduction methods. This may be due in part to the

relatively restrictsd applicability of standard swindle methods or to

a lack of awareness of the methods.

Perhaps the most comon application of Monte Carlo swindles in

statistics has been in estimating variances or man squared errors. A

simulation study of variances often forms the basis for comparing the

small-sample efficiencies of a collection of, say, robust or resistant

estimators. A typical and traditional question might be "How much more

efficient is a 10% trimmed mean than the sample mean in samples of 20

I...~
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from a heavy-tailed distribution?" The Princeton Robustness Study

(Mdrews et al., 1972) provides a large and weil-known example. On

smaler scale, such studies are now a roqtine part of the scrutiny of

statistical procedures.

Our principal purpose in this paper is to unify and extend the treat-

ment of swindles for estimating variances in the hope that they may then

be applied more easily and widely. To do this, we (1) propose a new

swindle (based on Fisher's efficient score function) that is simpler,

More effective, and more general than the current "Gaussian-

over-independent" (G/) method commonly used in variance estimation, -

(2) provide examples of how this swindle can be applied, and (3) describe

how this and other swindles for variances fit into a familiar geometric

framework (which in turn suggests further applications).

Section 3 presents the score function swindle first in the simplest

case: for location equivariant estimators in the location problem with

known scale. Section 4 presents a simple application to the problem of

estimating the variance of the Pitman estimator of location in small

samples drawn from Student's t distributions (and reports new results

for this problem). In Section S we compare the score function swindle

numerically with the standard Gaussian-over-independent swindle used in ...

the Princeton study. We examine the relative swindle gains for the two

methods for a variety of location estimators and distributions in the

t-family, and find that in most cases the score function technique

dominates. To facilitate the comparison, Section 2 presents some

general issues in assessing swindle gains, then outlines and discusses

the Gaussian-over-independent swindle.



-3-

Hamersley and Handscomb (1964) and Rubinstein (1981) discuSs

general principles of variance reduction methods. Simon (1976) surveys

applications of swindles to simulation studies in statistical research.

The comon swindles for estimating the variance of a statistic

T(Y) exploit a simple variance decomposition

(1.1) Var T * Var S * var(T-S)

in which S and T-S are uncorrelated and Var s is either known from

the distribution of Y or can be easily approximated. Ideally S

should be highly correlated with T, for then Var(T- S) will be small

and hence, in general, more precisely estimable. A useful way to obtain such

decompositions is to identify an affine subset Z of statistics with

finite variance to which T belongs and take S as a minimum variance

element of 7. This is discussed further in Section 6, where it is

shown how both the score-function and G/I swindles and a number of

other swindles discussed in the literature may be obtained by varying

the choices of . Further applications of swindles based on decomposition

(1.1) to statistical decision theory (frequentist and Bayesian), and of

the score function swindle in particular to multivariate, discrete and

bootstrap location problems are outlined in Section 7. NT IS RA I
DTIC TAB
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The 'regression estimate' of sampling theory (Cochran 1977,

ch. 7) suggests a variance reduction method which in some senses is

.2
simpler and more widely applicable than the above approach. Let a

be unbiased for Var T. Suppose there is available another statistic

S , preferably highly correlated with T , for which Var S is

known and possesses an unbiased estimate as. Then

-2 A2 ^2 2(1.2)Ta aT 7+ b (aS -aS)

is an unbiased estimate of 'T for all b, and has smaller variance than 1T

for some interval of b values about the optimm b* - Cov(,, Cr}/

Var(6 2 ). However, the optimtm b* will rarely be known, and will thus need

to be estimated, introducing a bias to aT. On the other hand, it is

not necessary to have S and T-S uncorrelated for the method to be

applicable as was needed for (1.1). A normal theory calculation in

Remark SA suggests that the decomposition (1.1), when available, leads

to larger swindle savings than (1.2).

This paper focuses on methods for increasing the precision of

variance estimates. Often comparisons of variance estimates in the

form V6r T1/VIr T2 or Var T1 - Var T are sought and assessments of

swindle gains will of course differ in these cases. Without attempting

a systematic discussion, we give in Remark 8B an assessment of the

swindle gains from the variance decomposition (1.1) in the ratio case.

The crude comparison of (1.1) and the 'regression estimate' (1.2)



(Remark SA) can be extended to the case of differences Var T1 -var T2

with normal-theory calculations suggesting that (1.1) dominates when the

correlation between S and T, , and between S and T 2 is fai.rly

strong and is of the same order or stronger than the correlation between

T1and T2 .
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2. IACKGROUND

2.1 Measuring Swindle Gains

Suppose that a decomposition (1.1) holds and that Var S is

known. We measure the gain in precision (or equivalently the reduction

in number of experiment replications needed) by comparing Var VIr T

to Var Var(T-S)

More specifically, assume that ET(Y) * ESCY) - 0 and that naive

method-of-moments estimators are used for Var T and Var(T -S) . For

example, Var T can be estimated by g E T2 Y~),where J indexes

replications of the sample Y a (Y1,...0Y) . Then, of course

Var V'air T = Var -(Y) , and from the identity

Vx T*2 (ET29ET4/(ET 2)2  1]

we obtain

Var VarT J 1 KTM 1
(2.1) VA V2(T
2.1Var VLr (T - S) I - 02(T,S) Lc (T - S) -_._=

Here K(T) CE T4)/(E T)2 denotes the kurtosis of T . The squared

correlation of T and S, 02(T,S) , equals the relative efficiency

Var S/Var T whenever S is minimum variance in a linear class contain-

ing T, as it will be in our applications (Section 6 has a proof). Thus,

subject to comparability of K(T) and K(T-S), the efficiency of the

swindle increases quadratically as the squared correlation of T and

S approaches one. Note also that the ratio (2.1) can be interpreted

as the factor NT/NT.S by which the number of replications to achieve

a desired precision is reduced by using the swindle.
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In measuring swindle gains, one should also-assess the relative

costs of computing T and T - S Since these will typically depend on

the algorithm and the machine, we will not indicate these comparisons

explicitly. However iffor example, S is a Pitman estimator, the

extra effort involved in finding S may be so great as to render the

swindle impractical.

2.2 Gaussian Over Independent Swindle

This swindle was introduced by Dixon and Tukey (1968) and Relies

(1970) and applied extensively in the Princeton study. To date it has

mainly been used for location problems: Simon (1976) gives a survey

discussion in this setting. We outline it here in a (more general)

regression setting in which at the same time the method seem more

natural (cf. also Goodfellow and Martin (1976)). Johnstone and Velleman

(1984) use this (and the score function swindle of Section 3) in a small-

sample comparison of several resistant simple linear regression methods.

Suppose that observations are drawn from a linear model, Y - XB +e

where Y is an nxl column vector, X is a fixed nxp matrix of

carriers, 0 a px I parameter vector and c an nx I vector of i.i.d.

variables Z /W drawn from a Gaussian-over-independent distribution; i.e.

z N(0,a 2 ), and the W are i.i.d. positive and independent

of z i  (Table I lists some distributions in the Z/W family.)

Suppose that T(X,Y) is a regression-invariant estimator of :

T(X, cY-Xd) -cT(X,Y)-d for any ce R , e RP .  We seek a

variance decomposition for Var T .

I ...

. . . . .. .. . . . . .. .. ,. .. . . ... _ _ • _ _ .. . . .. ,.
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The denominators, Wi , constitute extra information available to __

the simulation (but not available in real data when only (Xi,Yi) are observed.

Here they can be used to construct an estimator with known variance. Indeed,

conditional on K 1 , B and a 2  can be estimated by standard weighted

least squares estimates and O h te former having covariance

matrix a 2 (X A2 X)- 1 where A a diagCW1 ) . From the normal theory

assumptions on Zi  and conditional on Wi , it follows that (ON, a2)

are complete sufficient statistics for (B, a) , and that the standard-

ized residuals a(y - XB) 6  are ancillary. Basu's sufficiency-

ancillarity theorem (e.g. Simon 1976, Lehmann 1983 p.46) ensures
independence of the triple (9s , )w using the decomposition

a• * Uin.hedeopoitoAAA

y a,! and regression invariance of ~,we obtain

T(y) ONC-T;

Suppose also that T is unbiased. (This will happen for example

if regression invariance holds for negative values of c also.) If

the distribution used to generate the data satisfies a2 -1, - 0,

then conditional on V1  and using independence,

Var (T )IN - 2XAW X) + Va Ce)I ).

E(r(y)!) a0, H(TC.)K) a0 to obtain finally

2• 1

Var T(y) aE(X~A X) -+ Var T (e)

- -



--

In mn cases, the first term can be evaluated analytically,

numerically, or once-and-for-all by Monte Carlo, while Var T() ,

being smaller than Var T(y), can, in principle,be estimated more accu-

rately (c.f. equation (2.1)).

2.3 Limitations of the Z/W Swindle

The Gaussian-over-independent swindle depends crucially on the

Z/W representation for the distribution of the underlying data. While

the class of distribution that arise as variance mixtures of normals is

rich (see, for example, Andrews and allows, 1974 and Efron and Olshen

1978), it is only a subset of the symmetric distribtuions. Even within

this subset the gains realized from the swindle tend to decrease for

Z/W distributions with heavy tails.

This phenomenon can be accounted for in part by restrictions on

the first term in the swindle gain (2.1). Heavy tailed Z/W distribu-

tions must have some W. far from unity. Knowledge of W will then

convey more information about the sample, leading the variance of -

to fall further below the smallest attainable variance. This bounds

P 2(T, !,)(- Var k/Var T) away from 1.0.

Figure 1 illustrates this effect for Student's t distributions
(for which )i / . The Pituan variances in Figure 1 are the

smallest attainable among invariant estimators of location. All other

estimators would thus appear above the Pitman values. (See Appendix A

for the Pitman variances and notes on how -they were estimated.)

While we might ideally wish to swindle relative to the Pitman

estimators (see, e.g. Andrews et. al., 1972, p. 61 and Section 5 below),
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the expense of computing them would cancel much of the swindle gain.

However, as Figure 1 shows, often the Pitman efficiency is not far from

the Cramer-Rao bound. This fact motivates the method of the next

section, in which "estimators" with variance equal to the Cramer-Rao

bound are used to obtain higher correlation with T(y) while still

possessing a variance decomposition.

4 1."

- " " ... "i . ._L _ " . :" . . ' •" . .. . ..... 1
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3. THE SCORE FUNCTION SWINDLE

Suppose now that Y,...,Yn are independent random variables and

that Yi has density fi(y,e), e E e c RP . (Often the f will be

identical). We shall assume that the densities f. are smooth enough
2.

to permit the manipulations below (the "Cramer conditions" (Cramer, 1946)

would more than suffice). Suppose that T(Y) is unbiased for 81, at

least up to a constant:

E T(Y) - +c, 1 e

Given an arbitrary vector-valued statistic S, the linear combination

c*S having maximum correlation with T is just the (population)

linear regression of T on S, c*- 'C-, where " Co(S) and

- - S TS# Shr t -- (S n

SCov(T,S) . The resulting variance decomposition is

Var T a c. + Var(T-c* S)
T *TS - -

In general aTs will be no easier to estimate than Var S.
n

However, the score function, S(Y,S) - W . log f(Yi, 8) provides a

statistic S for which a TS is simple, and yields a random vector

with high (multiple) correlation with T when T has variance close

to the Cramer-Rao lower bound. To see this, differentiate the relation

E6 T(Y) e +1  co to obtain
~0
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6k JTCY) H1 f 8r,) 4y1

E H T(Y) S (Y. e)

Recalling that Eq S (Y, 8) 0 ,~ we find by fixing e at the value

(say a ) used in generating the data that S a SCI, !0 is a
"0-

"statistic" with the property ar *S (1,O....,0), and hence

(3.1) Var T e *A ~l *Var~ .(T - SSS _1 5)

Since $S depends only on the densities fit is, in principle, known

or calculable, and the Monte Carlo can be restricted to estimation of

Remarks,: a) This approach can be extended by taking higher derivatives of

the likelihood function. We discuss in'Remark 7C the amount gained by

the more refined swindles that result.

b) Some proposals for the use of score functions and Cramer-Rao

bounds are discussed in the setting of simultaneous simulation of two

variances in Appendix B of Andrews et al. (1972).

1) Location. Let Y. have density f(y -8) for f positive and
11

piecewise C1  on R . Let T(Y) be a location oquivariant estimator:

T(Y -co...1 Y~ +c) *T(Y) +c .Then clearly ETT 98+ co where
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n

where c 0 - E O(TCY) and e 0 , S--E f/fCYi) and S nI(f).
1

the Fisher information (for location) of the density f. Thus we

have the decomposition

(3.2) Vat TCY) - l/(n(f)) * Var TCY - (Y)l)

-l.

where (jY) - (nI(f)) S . Thtis if one knows both f'/f and

I(f) * E(f'/f) 2 , then the swindle simply bases the Monte Carlo estima-

tot on the data Y centered by 8(Y) . Note that S is not in general

a location-equivariant estimator itself (in fact it will be if, and only

if, f is Gaussian!), but this is irrelevant to the swindle calculation.

Significantly, there is no need for f to be symmetric.

The score function swindle includes situations in which the data

.e not an i.i.d. sample. A common example is the "one-wild" sampling

scheme in location problems (.Andrews et.al., 1972; Hoaglin, osteller

and Tukey, 1983, Chs. 10,11) in which n -1 observations are drawn

from f(y) and one from (1/1a) fY/O) for a0 known and large. The
/ n ""(y) and $S_(

score function S(Y,)- 1 1)/ 0 - 2 n- 14d C) If).

Suppose now that f includes scale as a nuisance parameter, Y

having density f(ZE) . Now 8 a (ij,a) and if T(Y) is a location

and scale equivariant estimator of u then E T(Y) u .o E, 1 T(Y) .

where 0 - (0,1)). Here the score function S -( n

where *(Y) u "f/f(y) , and

F . 2 E -7
2 2 2

. t : :Y .
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1 EY2 12

Thus, Var T Y) . YI ~ ny 2 2pY~~
E-~'~ 4 E YZ * -(E Y 42)

(3.3) + Var T(Y -*S 1)

In general, one would expect that as the number of nuisance

parameters increases and the unbiasedness condition becomes more strin-

gent, the Cramer-Rao variance bound -- the first item in (3.1) -- would

increase, thus giving a better swindle. For example, if f(y) a ce y IcycOl.

ce- y / 2 IfyaO} , the Cramer-Rao bound is easily calculated to be l.Sr6

times the bound obtained in (3.1) without the nuisance parameter for

scale.

Note, however, that if f is symetric about 0, then E YO2 (Y) S0 -

and the above decomposition reduces to (3.2), so that the swindle does

not gain by including the scale parameter. This is an instance of a

more general phenomenon: if the orginal estimation problem for 9

satisfies Stein's necessary condition for adaptation, then the swindle

cannot be improved by adding a finite number of nuisance parameters to

the model. In the present context, Stein's condition simply requires

that Cov(Sl, Sk a 0 for k a2 where (SlS2,...,S)k is the score

function vector for the augmented model. For more information on

adaptive (asymptotic) estimation see Stein (1956), Bickel (1982).

2) Reression. For simplicity we discuss here only estimation of

slope in simple linear regression, though the ideas generalize to

arbitrary linear models. Suppose then that we draw n observations

from the model Yi a 8(xi'X) C where the xi are fixed and



Lar 1i.i.d. according to some smooth positive density f. (If f

is symetric, we would gain nothing by including a nuisance parameter

for scale). Suppose that T(y) is a regression-invariant estimator of

0: T(y- b(x- l))- T(y) - b . In previous notation, 8 -

(0,0) ,S . _(,n(xi _,,) *Cy) Z n' O(y') , and because the x

2 2are centered, Coy S - diag(n a f IM, ni(f)), where a _ ECx - -).

Thso -l ( 2x ICE) Z(xi --!) *&yi) , which in the special
-1 X X 

case C€ " N(Ol) is just the least squares estimate of B . Finally

el S 1 11. r I The swindle has obvious extensions to

heteroscedastic situations in which, say, Var(C) varies with x , or

to cases in which the Xi  themselves are a random, sample from a distri-

bution. This method was used extensively in the regression study of

Johnstone and Velleman (1984). - 4

3) Scale estimation. If ScYl,..,¥n) is a scale-equivariant

estimate: SCCyi...,cYn) - cS(Y) and the Y are i.i.d. from a

density f(y/a) with location known, then Et log S(Y) - log a -

R1 log S(Y) and log 5(Y) is unbiased Cup to a constant) for log a.

Now it is often argued that Var log(Y) is an informative mea-

sue of performance of s(Y) (see e.g. Simon, 1976, IS). To apply the

location score function swindle, set a' - log a and lot p(y, ') -

f(y ) . The score function evaluated for a0 " 0 equals - 1if'f(Y1 )

and the variance decomposition becomes

- .. :.2.:

-,-
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Var log SY) r7n E y 2(¥)

-iy nli*(Y

SVa Ilog S(Y) E. 2 2 M .

If location is treated as a nuisance parameter, the above analysis can

be modified along the lines of the second part of Example 1.

4) Exponential Regression Models. Suppose that TI,...,T n  are

(positive) survival times with associated (scalar, for convenience)

covariates z,...z n and exponential hazard rate

X(Z,t)- exp(zo)

An appropriate notion of equivariance for an estimator B(z ,...,z n

t 1 ... ,tn ) of 0 is

(3.4) 1C:; e'y- t) - (zt)- y, y e R

Yzl Yzfn
wher ey! t donotes (e t1,...,e tn) . This is, for example,

satisfied by the MLE, which solves the likelihood equation

n Bz.

r z.Cl - e t.) * 0

"1"



-17-

it follows for any estimator 0satisfying (3.4), that for fixed z,

H8 O(z.T) -- c 0 B and hence from (3.1)

M3.) Var, Var, S *Vaz! 8(C-S)

where S-c rI i zj~c-i and Var S (Z zP

Extension to arbitrary (but known) baseline hazard rate is

:8straightforward but perhaps restrictive: if X(z,t) = e(t). t > 0

for e6>0 known and e9t M 6(s) ds , then (3.S) remains valid

for estimators 0 (such as the 14KB) which satisfy i(z. -3-(ey! emc))

B(z~t) -Y ,if t~ in the definition of S is replaced by e~t)
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4. AN EXAMPLE: PITMAN VARIANCES

This section illustrates the use of the score function swindle in

a simple but instructive situation: the computation of the variances

of the Pitman estimators of location under sampling from distributions

in the t~v) -family. The Pitman estimator of location e based on

n i.i.d. observations from a density f(x-8) on R (see (4.1)

below) has minimum variance amongst all location equivariant estimators

(Pitman, 1939). It is thus a natural baseline against which to measure

the relative efficiencies of other location-equivariant estimators.

In general, however, the variances of Pitman estimators cannot be

evaluated analytically. Hoaglin (1975) reports on numerical evaluations

of Pitman variances for selected small sample sizes from three particular

distributions (including the Cauchy, or t( 1 )). For the t family

used in our swindle comparison experiments in Section 5, no other

estimates of Pitman variances seem to be available in the literature.

Our Monte Carlo trials to obtain the Pitman variances are in

principle a straightforward application of the score-function swindle

in the form (3.2). In fact, (1.1) and (2.1) reveal that we are in the

situation where this swindle is most effective: since the Pitman -.-

estimator is the minimum variance location estimator, it has maximum

possible correlation (among location estimators) with the score function

statistic, whose variance is much more readily evaluated.

The Pitman estimator of e based on n observations from the

t. distribution is given by

(4.1) d (y) f n .y.,)d-/ f (y. e)de
p - j i-l 1. vii-

"', -z f~y.~e~d lI =1 (Y'ie~d . ,->.
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where (Y- c y 2 / }'C) /}/2 and c." rC+-)/r(v/2)A T he

score function and Fisher information are

n- i= ,  I - .(f) V1

Thus it is only necessary to estimate the variance of dp when

applied to samples after centering at S, and then to add this to

1 + 2/(v + 1) to obtain an estite of the Pitmn variance.

The following section (especially Table 3) documents the dramatic
b.

increase in precision (in terms of sampling variability) of these

variance estimates over those obtained by the standard G/I swindle.

TABLE 2

VARIANCES OF THE PITMAN ESTIMATES OF
LOCATION FOR SMALL SAMPLES FROM

STUDENT'S t POPULATION

Variance (standard error in units of last reported " -

decimal place)

10' 20t 40t-_•

t 1 .2624(49) •1157 .0S36(4 )

Kt2  .1855(14) .0880(S) .0428(1)

t 1460 .0716(0.4) .0354(03)

..1238(1 .0616C0"4 .0306(007-

t .1122 S6.023
16 (0.2) (0S60C04) 280(0.03)

2000 replications
t 1000 replications
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5. A NUERICAL COMPARISON

The performance of variance decomposition swindles depends on the

three measures in equation (2.1): i) 02 the squared correlation between

the statistic T and the control S ; (ii) oc(T) , the kurtosis of

the sampling distribution of T on samples of size n from the under-

lying distribution of the data, F; and (iii) i(T - S), the kurtosis of -

the sampling distribution of T- S (or equivalently, of T applied to

the residuals after removing S). These values depend on T, on S,

on the underlying distribution F , and on the sample size, n . We

describe the results of a simulation comparison of the score function

and Gaussian-over-independent swindles in selected location problems.

5.1. Correlation Term

We have previously noted that the relative size of Pitman,

Cramer-Rao and optimal weighted least squares variances limits the

maximum possible correlation between T and the control S However,

the behavior depicted in Figure 1 is itself dependent on sample size.

Figure 2 shows the effect of sample size on the Pitnn, Cramer-Rao, and

optimal weighted least squares variances for Cauchy data. The score

function swindle offers relatively little advantage in samples smaller

than 10, but substantial advantages in samples larger than 20 where the

computational effort needed for the naive variance estimates is of

course much greater. (The advantages will generally also be greater

for less extreme distributions.)

.. . .-



-21-

We emphasize that the variance decomposition swindles will

generally perform better when applied to more efficient statistics.

Thus for the same computing expense we will learn more about the better

performing (and thus usually more interesting) statistics. This

phenomenon was used to advantage in estimating the Pit an variances of

the previous section.

5.2. Kurtosis Terms

The kurtosis ratio that forms the second factor in equation (2.1)

makes it desirable that the kurtosis of (T -S) not be substantially

greater than the kurtosis of T. Often T will be asymptotically

normal and even its small-sample sampling distribution will be very

nearly normal. (This is true, for example, of umany robust estimators

of location or regression even at very heavy-tailed densities.)

Unfortunately, the sampling distribution of (T- S) can be very lepto-

kurtic. In general, the kurtosis of (T- S) tends to be higher when

T and S are highly correlated (thus counteracting the advantage of

the high correlation somewhat), when the underlying density is itself

leptokurtic, and when the sample size is small. We have no good way to

predict the kurtosis ratio, however we have estimated it in Monte Carlo

4 4experiments by acctmulating ET4 as well as Z(T-S)

The degradation of variance estimates for leptokurtic densities

is well known. (See, for example, Yule and Kendall 1950, p. 443.)

Briefly, the more extreme instances provide much of the information

about the variance, thus reducing the effective sample size. In the

swindle, when var(T-S) is very small, a few extraordinary samples

with large (T-S) can dominate the variance estimate.

--------------------. ~ - -. .. -

-j -~~~~. ,-... .,.... ........................ °.... -.--.
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S.3 Performance

Table 3 smmarizes the performance of these variance decomposi-

tion swindles in a variety of situations. For location estimators the

swindle gains are smallest for the most extreme population distributions

(i.e., t on small degrees of freedom) and increase as the distributions

approach the Gaussian. The larger swindle gains reflect high efficien-

cies of particular estimators at particular distributions. Figure 3

adds swindle gain information to Figure 1. The dependence of swindle

gain on efficiency can be seen especially clearly at t2 .

Only rarely in these trials was the Gaussian-over-Independent

swindle more effective than the score function swindle. Usually the

latter was 10 to SO times more effective.

The larger swindle gains deliver results with precision simply

not obtainable by naive methods. A typical trial of 1000 replications

required over 100 seconds of CPU time on an IBM 370/168. In the most

extreme case (5% trimmed man for samples of 40 from t 1 6 ) naive

methods would have required over 1S CPU days of computing time for

equivalent precision. The results for the Pitman variance in the same

situation would have required 158 CPU days. Of course these last

figures should not be taken too literally, as other sources of error

(numerical, rounding) have not been assessed. What is clear is that

sampling variability can be substantially reduced (or even effectively

eliminated in efficient cases).

Although the G/I method does not apply to asymmetric densities,

the score function swindle does. Trials on the rather extreme absolute

Cauchy distribution yielded swindle gains of up to 20 in samples of 40

and up to 10 in samples of 20.

." -.
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6.. A SIMPLE FRAIEWORK

The simple geometrical setting given here provides a way to-think

about swindles for variances that can suggest new applications -- includ- .-

ing some of these discussed in Section 7. The result (6.1) below

is standard in estimation theory (Rao, 1973, Lehmann, 1983) but its

role in Monte-Carlo studies is explicitly noted in unpublished lecture

notes of Charles Stein.

Suppose that T(Y) belongs to an affine subset Z (translate of

a linear subspace) of the class of all estimators having finite variance

under the distribution P0  generating the data. Suppose also that

S(Y) is the best (minimum variance) estimator belonging to ;r Then a

version .of Pythagoras' theorem gives the variance decomposition

(6.1) varT var S var o(T-S)
P P0 0 0

One way to see this is to note that since ; is affine, S +e(T-S)

lies in Z for each e, so that vary (S c(T-S)) is minimized at

P0

e =0 . Differentiation shows that S and T -S are uncorrelated,

which amounts to (6.1). We note in passing that expanding var, (T-S)

shows that 2(T,S) = Var S/Var T, as remarked in Section 2.1.

The usefulness of (6.1) hinges on the choice of ; since as

increases, var S decreases. Recall that we want var S to be

both known (or easily calculated) and large. We illustrate this first

by seeing how a number of swindles in the literature on location esti-

mation fit into this framework.

T -
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Suppose that the data, Y, consists of n i.i.d. observations

from a density f(y-0) on R. Reasonable estimators, T, of 8 are

Cat least) location equivariant, so to estimate the variance of T,

with no loss of generality choose P above to correspond to 8 . 0

(i) (Stein) a) Let ; be the class of all unbiased location

equivariant estimators. Then S is the Pitman estimator

S(y) - fe Iln f(yi-) de/fIr1 f(yi-8) d .

Typically, var S is not known analytically and must also be estimated

(see Appendix A for discussion). An estimator suggested by Stein is

(6.2) var T - W E ) (T(J ) - )

Jul. 1

th
Here the superscript J refers to the J replication of the i.i.d.

sa • ,...,Yn from , and V t o a maximal invariant

Y Y ' - Y n) . The right side of (6.2) is the condi-

tional expectation of the naive estimate 1/N E (T () given

V 040. . , V ) ,so var T is certainly a more precise (i.e., lower

variance) estimate of var T than the naive one. Of course, a (uni-

variate) nunerical integration is needed to compute each S(J) and

E[(S(J)) 2 ,V(J)] , but these can then be used repeatedly in estimating

the variances of many equivariant estimators.

b) The same program is possible if Z is restricted to the class

of location and scale equivariant estimators, with the Pitman location -

scale estimator serving as the "control function" S. Of course,

bivariate numerical integrations are now necessary.
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Cii) (Takeuchi, 1971) Z -unbiased linear combinations of order

statistics Y(i) with weights c. (not necessarily positive) summing

to 1. Then S(Y) aE c i  where c* 1/(l 1 ) and

;f, ij C0 °VfCY (i) YCJ)) Thus, once *f is known, both S and

var S are readily computable.

(iii) Gaussian over independent swindle. (Andrews et. al., 1972;

Hodges, 1967). A special assumption on f is needed, namely that the

observations Yi. as in Section 2, have the form Y " e - /W

where Z i  N(0,1) and Wi  is independent of Zi . Now is the

class of unbiased location-scale equivariant estimators. Here the

variance decomposition is performed conditional on (NJ....,) , so

the problem of estimating 8 becomes that of estimating the slope in

the normal theory regression model ii M iXi a ew i + Zi . where the

V. are known but the Zi  are not. The definition T(W,V) -T( 1/W1,

..., n/Wn) associates a slope estimator T in the regression model

with T ( ; further, since T is location-scale equivariant, T is

regression equivariant (in the sense of Section 2) and unbiased for 8

To apply the decomposition (6.1), let V(W,.) " Z w../ZW be the

miniunm variance unbiased estimator of 8 . Thus conditional on W,

Var T -VarT + Var@- 9)

.rw.

Finally, since E uTIN) 0 under e - 0, take expectations over W

• to express the unconditional variance of T as

" . - -". _ _
.. A.. "•----.* --- -
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Var Tm 0 (1/Zwj) . o TCXE -) 0

(In fact, the second term on the right can be further decomposed

slightly by exploiting the independence of the normal theory mean and

variance estimators (cf. Simon, 1976), but the extra improvement in

precision that results in small relative to that to that obtained here.)

(iv) The score function swindle. Define T to be locally

unbiased for 6 at e0 if E0 T eo0  and /e rETI. 6  1

00

Choose ; as the affine space of estimators that are locally unbiased

at 80 0 As in Section 3, under appropriate regularity conditions,

we have for statistics T(Y) of finite variance

(6.3) E T19. .ESo T

ae

where SO  is the score function for location. Normalizing S0 to

2
give S - So/EoS 0  ensures from (6.3) that S belongs to ;, andv0 0S

further that it is unorrelated with T- S for T e 7. This yields

the variance decomposition (6.1).

An analogous treatment is possible to the (successively smaller)

affine spaces Lk consisting of estimators locally unbiased up to

order k: i.e. in addition to the properties above, we require that

aj/aej E e T a 0 for j 2,...,k
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7. IMUR7ER APPLICATIONS -

Stein effect and Bayesian robustness. Consider estimation of

-. using independent observations X" ce, 2 a

i a l,...,p, when loss in estimation of 0 by 8(x) a (61(x),...,6CX))

is measured by eE~ ~2-E~8( -8) and risk by R(Q,j)I 3L i
""E 8 I6Cx) - 212 It is often of interest to study the integrated risk

r(W,6) - fR(,6)irCde) of a rule 6 and the Bayes risk r(C) =

inf r(,j) relative to a prior measure i(d2) . For example, Efron

and Morris (1972) and Berger (1982) have used r(w,S) and r(r,f) -

r(r) in studying the "relative savings risk" of Stein-type estimator

from empirical and robust Bayesian viewpoints respectively.

A fixed prior r(dQ) determines, in conjuction with the sampling

model, a marginal measure 11(4) and, under the quadratic loss function

L, an L decomposition analogous to (5.1), namely

(7.1) r(,S) - r(r) l [aCx) - a-(xl' nCdx)

where 6 Cx) = E[81x] is the Bayes rule minimizing r(w,6) . The

integral above is much easier to simulate (or evaluate numerically)

than r(w,6) - fR(e,8) diCe) - E[LCe,a)Ixi IT(dx). There is a further

saving if one compares several 6 for a fixed if (as done in Berger

(1982)), since r(r) need only be evaluated once. Although analytic

expressions for R(8,8) are available for many of rules 6 of

interest in the Gaussian case, this special feature disappears for

other location densities, whereas the decomposition (6.1) persists.
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ulttivariate Location

Let T(Yl,...y) be an be an unbiased, location equivariant

estimate of the location parameters 8 OKid based on n i.i.d. obser-

vations xi from a smooth density f(y- 6) in i d In principle the

score function swindle extends directly, but we mention a couple of

interesting features. The score function 'statistic' is now a vector

with components - : Dkf(yi)l/fCyi) having mean 0 and

covariance matrix S(0). Defining S r - S(O) leads to the matrix

decomposition

T S T-S

where is the covariance matrix of T . Note therefore that covari- -

ances of the components of T can be swindled in addition to the vari-

ances of the individual Tk . Such a swindle could be used to study

efficiency properties of, for example, the computationally costly high-

breakdown, affine-.quivariant estimates of multivariate location

proposed by Donoho (1982) and Stahel (1982).

Discrete Parameter Spaces -

A discrete parameter version of the Cramer-Rao inequality (the

Hamersley-Chapman-Robbins inequality) leads to a natural analog of

the score function swindle. Suppose that Y has density p(y,8) > 0

for y e and e e e. Fix 80 c ,A suchthat 0 +Ac e. Let

'T (T: E8 0T-EeoT=} . Then the decomposition (5.1) holds with
0 0

S - cP/E* 2 and f = (p(x, 80 &)/p(X,8o)} - I . This version of the

0. 0
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-". . .-- . - -

swindle can be of use, for example, in settings where the parameter e

is restricted to lie in a lattice such as the integers, as in the

problem of estimation of molecular weight discussed by Hamersley (19S0).

Bootstrap Estimates of Variance

To take a specific example, suppose that observations Xl,...,x n

are taken i.i.d. froudistribution F(x-e), and we wish to use a trans-

lation invariant estimate T(Xl,...txn) to estimate e . In constrast

with the simulation contexts considered earlier, it is not assumed here

that F is known. Bootstrap estimates of Var FT(Xl,...,Xn) are

obtained by replacing F by (some function of) its empirical distribu-

tion function F , say F , and estimating VarF* T(Xl,...,xn) byn nFn
drawing N i.i.d. samples form Fn and then using the usual variance

estimator.

Consider the following modification of the score function proce-

dure to reduce the number N of "boots" required. Construct a density

estimate fn from Fn  (say by using kernel methods) such that an

empirical score function f./f and estimated information f(fn/fn) 2 fndx

can be easily evaluated. Write Fn for the cdf corresponding toTI

density fn" Now draw i.i.d. samples from P' and apply the location

score function swindle, thus estimating only Varp. T(X- (X) 1) . This

proposal is speculative at present: work is in progress to evaluate the

improvements obtained in particular situations.
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S. DISCUSSION

8.A. Compaison of (1.1) and (1.2)

Suppose that the control statistic S satisfies (1.1) and let us

compare the swindle gain from the variance decomposition (1.1) (given

in (2.1)) with the swindle gain from the "regression estimate" (1.2) in

the overly-optimistic situation that b * -Cov(, S a)/Var(aS) is

known. In this case, assuming as in 12.1 that ET a ES a 0 and that

a2  a2
aproxand onT agiven by naive mthod-of- ments eitors, we have

Var(;T) 2A Z-

Var((YT)

To render the calculations simple, suppose to a first order

approximation that T and S are jointly normal with the same variance

and with correlation n. Then 0($ 2 , T2 ) * n2  and it is easily chocked

from (2.1) that

var(; T 1 1 var(;2)

Var~aS (1-g ) -n Vr.
2

T-S T

so that under these crude conditions the swindle gains from (1.1) are

better than those from (1.2) by a factor of 5 when n a .8 and by a factor

of 10 when n - .9

Suppose now that we wish to estimate Var - Var T2  for TT

satisfying (1.1) for the same S. Again for simplicity, assume that
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T1 ,T 2  and S are jointly Gaussian with means 0, the same variances,

and 0CT1 ,S) p P(T2,S) - w, p(T 1 ,T 2  P .• It follows that the optimal

2, -2 ^2 A 2b* and b; above will be eulanhnctat 1  T T C
1 2 eqa1adhneta 2 1T T 2

so that the regression swindle pT se offers no improvement. However,

since T1  and T2  are correlated

(81) N Var(a&2 
- ^2 C AZa22 2T 2 4(

2 1 2 1' 2

so that the precision of the difference is greater than that of each

individual term. (here N is the number of Monte-Carlo trials). Does

the variance decomposition swindle (1.1) help here? Easy normal theory

calculations show that

2 A2 2 2)

(8.2) N Var(3 (T S) -(T 2-S) 4(4(1 -w) -(1 -w) 2 }

Denoting w/p by a, then (8.2) is smaller than (8.1) exactly when

p> 1/2m . Thus, for exaile, if all of TIT2  and S are equally

correlated, the variance decomposition dominates the simple difference

when that correlation exceeds 1/2.

8.B. Swindles for Variance Ratios

Sometimes we are primarily interested in estimating an efficiency

Var T/Var S, where S has minima variance amongst all estimators in

UJ. If Var S is known, then the improvement achieved by a variance

decomposition swindle can be measured simply by comparing Var Var(T-S)
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with Var VAr T as above. If Var S must also be estimated, then we

can give a crude indication of the improvement attained as follows. We

continue to assume OS a ET a 0 and to use moment estimators for Vir S ,

Vir T and Var(T-) . Thus, using the generic labels s and t for

replications S(X) and T(X 1) for I 1,...,N , we seek to compare

the variances of! "*
l 2  s2  2 :ts)l.

(8.3) A " - , a P
1 -7 2Es

(the naive and swindled estimates respectively). Wkking the rather

crude assumption that the values of t-s (small compared to s) are

independent of s and symmetrically distributed about zero, one finds

that

(8.4) ECt 2ICt-s) 2 
, 

) - s2 , (t-s)

so that certainly Var(Et 2 ) Var(Es 2 + (t-S )  A more explicit

expression for the difference in variances of ;1 and 02 follows by

expandling t 2 as s 2 * 2s(t-s) + (t's)2  and conditioning on all

s S(XI) values. From the independence and distributional assumptions

on t-s , we have *l l S *,...N E^Ce2sl,.Ps so

V2r VvaL (2 sE Var+ L-" :
2 2

E Var.(2Zs(t-s)s] -4 Var(t-s) E s O2~' 2 ,.

•~E (Zs..- .



-33-

A further point to note is that 2 2 1, whereas it is certainly
possible for el to be less than 1, in cont-adiction with the opti-

I .eality of S.

S.C. Bhattacharya Bounds

The Cruaer-Rao bound is the first of a sequence of lower bounds " "

to the variance of an estimator that can be obtained by using succes-

sively higher derivatives of the likelihood to build control functions.

In estimation of a single parameter 0 , these Bhattacharya bounds take

jthe form (e.g. Lehmann, 1983, p. 129)

(8.5) var6r C'L KC() -B_

where * = [f%(y)] 3J/3ej f%(Y), CL' is a row matrix with entzies

---, E 6 6(Y) ov(6,4(i)) j " 1,...,p

and K C(8) Cove (i) If 6Y) is unbiased for e (at
i-1

least up to a constant), then the lower bound becomes [K 1(e)]11

which by standard matrix theory is an increasing function of p . When

the Bhattacharya bounds are strictly closer to the Pitman bound, they

lead in principle to more effective swindles. In practice, the cases

discussed below suggest that for p a 3 or for moderate to large n

(when the C-R bound becomes quite good anyway), the improvement is

not very significant.
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Consider the location problem, initially with p = 2 , and

fe Y)- 11 f(yi-e) .If 8 is unbiased, then we easily calculate the

percentage improvement in the lower bound from

I / 1 1 B 22  2 (1) - 1

P11 22"12

In fact B2/B 1  is independent of 6 in the location problem, and if

e - O, and *Cyi) - f /f(yj) , then

*Cl)(y) a 4ati) 0 ( ) " " E#'(Yi) (Z*O4Yi)J 2

Now if f is symnetrc about 0 ,then f, 2 and *' are even func-

tions while * is odd, so that Cov(( 1), *(2)) a 0 . Thus the second-

order Bhattacharya bound offers no improvement.

Even when f is aumetric, the gain decreases inversely with n.

Indeed

2 (1) (2)(E O.n.) C )z(8.6) 02,l C) E*~

where rl (yl) - (*2 4')(y1 ) . For a specific example, let f(y) *

% n(y) for y>0, and c. n(y/) for y<0, where nC(y) a(2w) - *" /2

and C ,a (14o)/2. Then

0z(c, C]1, ,C2)). ,i-.2r (1./)a-l) (

2. %
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In the sy mme tr2.c location case one is forced to look at third

order bounds, and it is easily shown that

2 (1) (3) 2

where C UV- * *(0 If f is Cauchy, then calculation shows

that

P 02 N (1), 0 (3)

Thus the improvement will typically be quite small: in this case, for

n us, 83/Bl 1.046S for example.

i7
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TABLE 1

GAUSSIAN, INDEPENDENT (Z/W) DISTRIBUTIONS

(from Simon (1976))

Distribution N Drawn Form

N(O, a2) W - 1a 2

(Cauchy st) W W OW)I

lwith prob up
"Contaminated normal" I Il/a 2with prob, a 1 - p

"Slash" WV". U(0,1]

Laplace f~) W3ep-2/2
(Double Exponential)fv)aw 3 e(w /)
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su 3: u z C rT 1so W0 D3CU0osflu wzmhLK

p Ienulml~m Dhaen.bumt t as ladla, sed ewa op rtgeda.

10 1.8 1.9 0.6 3.4 48.9 7.9 35.3 1U.6 20.8 12.0 --

D 20 6.4 1.8 47.5 3.3 105.? 9.1 74.5 20.1 35.8 16.8 10.3
4 12.6 2.9 113o0 6.1 306.9 7.6 136.9 16.9 58.4 22. 15 .9

13 1.2 1.4 2.4 2.3 28.9 6.9 23.8 17.3 747.9 42.7 -
u 20 1-6 1.3 1.4 2.0 9.3 5.7 U7.3 34.9 2011.3 49.8 3.6

40 2.6 1.6 U.2 3.0 126.9 6.2 3119.7 25.8 2032.6 52.8 6.2

10 2.6 1.7 9.2 2.9 32.5 5.9 20.1 7.5 1.5.0 9.4 -

M A 20 5.0 1.5 U.2 2.6 26.6 6.0 20.2 30.1 13.5 8.1 7.8

40 11.5 2.4 27.4 4.5 2.9 4.8 15.7 6.3 11.6 6.9 16.5

20 1 1.0 3.0 1.0 1.0 2.6 2.2 8.5 4.8 10.6 7.7 -

TRI 20 1.2 1.6 47.4 3.1 176.2 8.8 185.2 22.8 6.9 20.0 2.2

40 4.7 2.2 79.0 5.4 907.1 8.3 465.2 15.1 147.8 27.5 1.9.7

, 10 1.0 0.4 2.6 2.2 47.2 7.7 49.6 19.7 1390.6 38.6 -

I 20 1.2 1.0 9.4 2.0 96.5 9.2 1966.1 39.3 2138.2 30.7 2.8
40 1.9 15 10.5 3.0 265.5 7.3 7066.0 24.7 22.0 47.0 3.7

5z 10 1.0 5.0 1.0 1.0 4.6 3.2 26.9 10.7 247.6 35.2 -
TUN= 20 1.0 1.0 3.6 .1.5 29.7 7.1 14A.6 .36.0 7766.0 61.0 1.3

40 1.3 1.2 3.2 1.8 5.5 35 136.7 23.7 13654.0 57.9 2.0

10 1.0 5.0 1.0 1.0 4.9 3.2 32,9 10.6 407.6 36.0 -

a 20- 1.0 1.6 1.0 1.4 4.3 2.9 93.6 22.4 6S.9 47.9 1.0

40 1.0 0.8 1.1 0.3 6.9 3.0 78.3 15.1 993.3 48.0 1.0

10 5.1 2.1 22.7 4.2 148.4 9.2 1356.7 19.7 18,864.6 45.6

IJ 20 9.6 2.5 ".7 3.4 300.8 10.3 4942.6 40.7 39.607.6 60.6

60 31.6 3.8 328.4 6.7 2295.0 9.4 35596.6 2.4 136.44.6 58.0

C a- 10 2000 replications

SS - Sm" I amr Swiand"
,, 20.40 1000 replications

Z /V - 0mm- .,.u--adapindma SvAd.
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1 ABSTRACT

M onte Carlo swindles or variance reduction techniques exploit the experi- ---.

menter's knowledge of the stochastic structure governing the simulated data to -

construct more precise estimates of unknown parameters. Alternatively, one can

reduce the number of replications (and thuis the cost) needed to gain a desired

level of precision. This paper reviews the coon case of swindles based on

variance decompositions for estimating efficiencies and variances of location

and regression estimators. -We then proposea new swindle based on Fifher's

efficient score function that can be applied to a much wider range of situations

than can the Gaussian-over-independent swindles used in many studies of robust

estimators. -We compare these methods by performing simulations for the ef- "

ficiencies of location estimates and by placing them in a simple geometric frame- 

work. We illustrate the use of the score function swindle in estimating the

variances of Pitman estimates of location for samples from the t-distribution at

selected degrees of freedom. Finally, we sketch applications to scale estimatio

exponential regression, statistical decision theory, and bootstrap computations
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